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Abstract

In the application of Padé methods to signal processing a basic problem is to take into account the
effect of measurement noise on the computed approximants. Qualitative deterministic noise models
have been proposed which are consistent with experimental results. In this paper the Padé approximants
to the Z-transform of a complex Gaussian discrete white noise process are considered. Properties of
the condensed density of the Padé poles such as circular symmetry, asymptotic concentration on the
unit circle and independence on the noise variance are proved. An analytic model of the condensed
density of the Padé poles for all orders of the approximants is also computed. Some Monte Carlo
simulations are provided.
© 2004 Elsevier Inc. All rights reserved.
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0. Introduction

In many signal processing problems afinite number of terms of the sequence of equispaced
data

ar=sr+vw, k=0,1,2,... (1)
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wherev, is a complex Gaussian white noise sequence is givenZHransform

oo
s@ =) szt
k=0

is then considered and inference{og is performed based on a Padé approxinfiant] » of
f@ =372, arz~* computable from the observatioms k =0, ..., [+ n. The poles of
[/, n]s in the complex plane are the key quantities to make inferendeg,priinfortunately
these quantities are very sensitive to noise. Therefore the knowledge of an approximation
of f(z) alone hardly helps to solve the problem. However, the appearance of the Froissart
doubletg10] (pole-zero pairs off, n] s close to the unit circle at a distance proportional to
the scale of the noise) can help identifying the poleig of]; filtering out the noise-related
ones[6]. Following a somewhat different approach[2-4,15,16], we were able to get
some partially rigorous asymptotic results on the behavior of the polgsif; for some
specific classes of functiongz) by using qualitative models for thé-transformv(z) of the
noise. Moreover, we demonstrated experimentally that inference methods based on these
asymptotic results perform very well in many real life problems. The aim of this paper is
to provide some theoretical justification for using such qualitative noise models.

More specifically the qualitative models fo(z) are derived as follows. First notice that
if the v, are independent and identically distributed complex random variables with mean
zero and variance?, the variance of(z) is [1]

E(v@)P =Y E{wz P} =06 > 2% =d?/A— [z,

k=0 k=0

where E{-} denotes the expected value and the series converges in quadratic mean for
|z| > 1.

The variance diverges asapproaches the unit circle in the complex plane. Thus the
presence of the noise makes the unit circle a natural boundary for the furationi.e.
a curve of singularities which separates the complex plane into two disconnected pieces.
Then Gamme[8,9], motivated by the Froissart experimental results, conjectured that the
noise functiornv(z) is a quasi-analytic function in the sense of Carlerf¥dnFollowing this
conjecture, in the papers quoted before we then approximated the random fuctiby
the following deterministic one:

my

i)=Y B/(1-Bz7Y, @)

r=1

wherem, is a large integer, the polgs = ¢!V are equally spaced along the unit circle,
and theB, are complex constants which satisfy the condition

|B,| < const. exp(—+*7),

with y > 0. Asm, — oo Carleman has show[7] that function (2) converges to a quasi-
analytic function which has the unit circle as a natural boundary. We would like to show that
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Fig. 1. Location of the poles 429, 30],(z) for 50 independent realizations of

the Padé approximants ofz) are random rational functions whose poles have a distribution
concentrated close to the unit circle (see Hip.In [18] the asymptotic zero distribution
of polynomials orthogonal with respect to certain positive measures on the unit circle is
studied and it is proved that the asymptotic zeros distribution is uniform on the unit circle.
Unfortunately, this kind of result is not useful in the present context becausg(thas
a random function, therefore the Padé approxim@nis] ; involve random polynomials
orthogonal in a generalized sense with respect to the randonfudaiand hence they, are
not the Fourier-Stieltjes coefficients of a positive measure.

In the following, it will be proved that the condensed density of the pol¢s of s —i.e.
the expectation of the normalized counting measure defined on the poles—swhef
andv; are i.i.d. standard complex Gaussian variates is circularly symmetric far &ll
is concentrated around the unit circle, therefore supporting the choice of the deterministic
model (2) and it is independent of the noise variance. Moreover an analytic model of the
marginal condensed density, with respect to the absolute value of the poles, is derived for
all ordersn.

The paper is organized as follows. In Section 1 the properties of the condensed density
of the Padé poles are derived. In Section 2 a model of the condensed density is computed.
In Section 3 some numerical results are shown.
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1. Properties of the condensed density

Let f(z) be theZ-transform of the sequendey} given by the Laurent power series
o0

f@Q =) azt 3
k=0

From the coefficients in this expansion we may compute the Padé approXimalt of
orders! andn to f(z) which is defined by1]

[1,nly = Piz™h/ P2z,
where P1(z) and P>(z) are polynomials iy of degred andn, respectively, which satisfy
Pizh = P h f(x) = 0 D), as|z] > oo. @

Given theay, k = 0, ..., + n, the substitution of expansion (3) in condition (4) yields a
linear system of equations which determines the coefficients of the polynaPaiald P».
If we write the coefficients ofP1(z) and P>(z) as

Pi(2) = fo+ Prz+--- + B2,
Py(z) =1+ oz + -+ + 012",
the linear system is given Hg]

Bo = ao,
1=ai+ aogt,,
Bo=az + aro, + agoty—1

Br=ar+a_10 + - - - + aotn—i41,
O=ajy1+aioy + -+ + @j—p+121,

O=ajn+ajpn—10 +---+aoq

with the convention that; = 0 if j < 0. Let us define for every integerthe Hankel
matrices

dg dg4+1 ... Qg+n-1
a a e a
U(q) — q+1 Qq+2 q+n (5)
aq+n_1 Ag+n --. Ag4+2p-2
and the vectora? = [agn, ..., aq+2.-117 . To compute the coefficientsof Po(z) we

have then to solve the linear system

pa-—n+Dy — _ U—nt1)
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The poles of/, n] s are then the roots af,(z~1). Equivalently it can be easily shown (see
e.g.[4]) that the poles are the generalized eigenvalugg/ét™, U@), g =1 —n +1,
i.e. they are the roots of

det(U<q+1) - zU(q)) — 0. (6)

In the case considered here the sequéagkis a sequence of i.i.d. random variables. The
Padé approximants, n] s of the random function (3) exist a.s. as provedlid].

Let us now recall the definition of the condensed density of the zeros of a random
polynomial. Let us consider first the normalized counting measure

Vi :% Z 0(2)

Pn(2)=0

on the zeros.; of a deterministic polynomiaP,(z). We can also define a spectral density
(z) = Ly 0 Aj
(@) =~ Z (z— ).
j=1
If AisaBorelsubsetdf andH = {41,..., 4,}then

vn(A) = / pn(2)dz.
A
When we are dealing with random polynomials the zeros counting megsbexomes a

random measure. In this case, we are interested in the mean percentage of zeros belonging
to A. Following[11] we can then define a condensed densijtiz) by

E[Vn(A)] = / hn(z)dz
A

which exists whatever is the joint distribution of the polynomial coefficients. Therefore,

1 - .
hn(2) = Elp, @] =~ E | }_ 0z —4))
j=1

We also have that, when the random polynomial leading coefficient is equal to one, all the
marginal densities of the roofs, . .., 4, are equal to the condensed density function (see
e.g.[5]). We can now prove the basic result where we denote by tr the trace operator and
by log,, the matrix logarithm operator.

Theorem 1. The condensed density of the zeros of the random polynomial
Pz = 0(2) = det(UHD — @)
is given by

1
hp(z) = E Aun(z): (7)
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wherez = x +iy, A = ax2 + ayZ and

1 (2) = %E ftr (tlogy, [+ — vy @@ —zv@)])]
or, equivalently,

1
un(2) = = E{log(10)P)} ®)
n

Proof. From the definition of matrix logarithm we have
log[det(A)] = tr[log,, (A)]
for any square matri¥. Hence
log|Q(2)|? = log[detU ™Y — ;U @) . deqU@+D — ;U @)]
= log[de§(U“+D — zy@) . (Ua+D — zu@))]
=trlog,, [((UY*Y — zU9D) . (UG+D — ;U@)].

But we also have

0(2) = detU 4V — ;U @) =T[4 —2) - det®).
J

Hence

log|Q(2)[*=log[ ] Iz — ;I* + log | det U ©)|?

J
= Z log|z — ;12 + tr log,, (U U @),
J

By equating the two expressions for lg@(z)|* we get

Z |Og |z — )\/‘j|2
J

= tr log,, [(UYHY — zU@D) . (U+D — ;U@)] —trlog,, (U PU@D). (9)
Let us now consider the classic reqdl®, p. 47]:
1
Alog ——— = —215(x)d(y). (10)

But thenifz = x + iy

4i A log(|z]%) = 8(2).
TT

Using this identity we have:

1< 1 < 5
hn(Z):;; [5(2—/1) _E]:l I:A|09|Z—/1]|:|
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But A log|z — /Ij|2 is a nonnegative distribution, thereforedifz) is a nonnegative test
function with compact suppof®, then by definition

Aloglz — Z1%(¢) = /Q(Ad)(z)) loglz — /% dz

and

n

1
[ oz = 3 k| [ @eiogle - 4saz| < o0
j=1

becauseb(z) is continuous angfc h,(z) dz = 1, hence by Tonelli's theorem

1 n
/th(zyz)(z) dz =, ]Z:;/S;(AMZ))E [|og|z - ;vj|2] dz.

Thereforeh, (z) = ﬁ ?:1 AE[log|z — ij|2]. But then, from (9), we have

1 S
h(2) = 5 AE {tr log,, [(U@“) Dy UErD zU<q>)]}

because” {tr <IogM [U<‘1)U(fi>])} does not depend an This completes the proof.[]

Remark. We notice that—4—l7Z u,(z) is the logarithmic potential of the condensed density

In the next theorem the circular symmetry of the condensed déengity and its inde-
pendence of the noise variane@are proved.

In the following, in order to simplify the notations, the functions are denoted by the same
symbols either when a change of variables from cartesian to polar coordinates is done or
when the dependence on a specific variable has to be stressed.

Theorem 2. If the dataai, k = q, ..., q + 2n — 1 are independentgero mean complex
Gaussian random variables with varianed andz = re'* thenu,(z) is a function of r
alone and is given by

1
un(r) = — E {log (det{ F (. 1)}, (11)
where
F(}", g) = U(q+l)U(q+l) + r2U(f])U(q) _ r[U(q)U(q+l) + U(t]+l)U(q)] (12)

and

Q = [aq» e at]+2ﬂ—l]'
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Moreover the condensed density in polar coordinates is

r (0%u, 10u,
/’ln (V, O() = E <m + ;E) s (13)

the marginal condensed density with respect to r is
1
h;lr) (r) = 5 (ru’n/ + ”:1) (14)

and the marginal condensed density with respect te uniform on[—=, n]. Moreover
h"” (r) is independent of2.

Proof. By hypothesis

1 _l?
g'vme 02, whereN = 2n.
o

This density is then invariant under the transformation

a— ei’gc_l. (15)

Let us show that it = ¢/#z = re!@+h) thenu, (z) = u,(Z) V. From (8) we have

un(3) = % E {log[det{(U@“) —rel Py @y (U@t - rei<a+ﬁ>u<q>)}]}
ey {Iog[del{U‘q“)m +r2U9U@
’ir(ei(“+ﬁ)U(‘1)m + e—"<°‘+ﬁ>U<q+1>W)}]} ‘
Letting V@ = ¢F2y@  y@+D) = o~if/2y@+D) we have
VOYy@ = y@Dy@, yatye+d = yetlye+D),
AP Y@ UGTD = 1% P2y @Dy (e=iB20 @Dy = iy @Y G+D),
e~ i@HP @D (@) — e—ia(e—i/f/ZU(q+l))(W) — ety @ty g
and
uy (2) = % E [Iog[dei{v(’“l)m +r2v@v@
—r(E@*VOVETD 4 Ty DY@

Hence, from the invariance property of the distributiorzafnder transformation (15), we
haveu, (Z) = u, (z). But then takingl = —o we haveu, (Z) = u, (r).
In order to prove (13) and (14) let us consider polar coordinates cosx, y = r sina

2 2
in (7). Remembering that the Laplaci%% + aa—yz, in polar coordinates is

az+1 62+16
or2  r2002  r Or
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we get
. r [ 0%u, 1 0%u, 1 0u,
hy(r, o) = rhy,(r cosa, r Sino) = e ( 2t 232 7% ) . (16)
Therefore, ag,, does not depend an formula (16) reduces to
r (0%, 1 0u,
hp(ryo) = — —— | = h,(r). 17
n(r, o) 47‘E<6V2 +7‘ ay) n(r) (17)
The marginal densities with respecttanda are, respectively,
Y Y 1
R (r) = / hy(r, o) dow = / hy(r) do. = 21th, (r) = > (ruy +uy,), (18)
—T —T

and
h,(f‘)(zx)zf Ry (r, oc)dr:f hy(r)dr = —/ RO (rydr = —
0 0 2n 0 2n

thereforeh,(f)(oc) has a uniform density op+7, n].
We show now thah,(,’)(r) is independent of2. Let us consider the change of variable
d = 1aand writeu, (r) as

1 _la?
() = oy [ log(detr ) e da. 19)
But
N-1 N-1 N-1 N-1
da = ]_[ Rday, - ]_[ Sday = o ]_[ Rday - o ]_[ Sdag = o?N da,
k=0 k=0 k=0 k=0

whereft and denote real and imaginary parts. Moreo¥&r, a) = ¢2F(r, @), therefore
det{F(r,a)} = N detf{ F(r, a)} and

1 _
un(r) = 2N log(0) + — / log (det( F(r, 4)}) e ™14 da. (20)
nm
But thenu),, u, and hencézﬁf)(r) do not depend on. [

In the next theorem we prove that the condensed delﬂ,%?ty) converges to the uniform
measure on the unit circle when— oo.

Theorem 3. lim,_ oo A (1) = 8(r — 1).

Proof. Let us consider the matrix functign(A) = log (def A]) defined on the Hermitian
matricesA. From[17, F.2.c, p. 476}ve know thatg is a matrix-concave function. Hence
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from a generalization of Jensen inequality to matrix functidis E.6, p. 467]t follows
that

E {log (def F (r, a)])} < log (de{ E {F(r, a)}]) .
But
E[F]=E[UYYy@tD] 4 2E[UDU@]
—r (EWWUG@D) + Eueu@))

and, because thg are independent random variables,

n
el EUDU@He, =" Elajpanix] = 8;kn0”,
h=1

n
efEU YU D), =) Elajin1anik—1] = 5;xna”,
h=1

n
EJT'E[U([’H)U(’”]Q/( = Z Elajih@nik—1] = O} —1na?,
h=1

n
EJTE[U(q)U(q+l)]€k = Z Ela)h-1n+k] = 8j-1,m0°.
h=1

Hence
14— 0 ...0
_ 2 _
E[F] = o2 r 1+r r 0
0 ... 0 —rl1+7r2
Moreover it is easy to show that A& F]) = (n2)" Yo r2i . Hence

log detE[f]) = n log(ns?) + log Z 2
=0

and
1 G
un(r) < log(no®) + = log Z 2, (21)
n —

In order to find a lower bound far;, (r) let us rewrite the marginal condensed density with
respect tor ashff)(r) = [% rul]’. Hence% ru,, must be a distribution function. But then
% ru, >0 and therefore,, (r) is hondecreasing. Moreover, it is easy to show that

u,(0) =c¢, > —c0 (22)
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g, (23)

But then the Green function of the differential operator in (14) with the boundary conditions
(22) and (23) is

|Og)c2 if r<x,
logr? if r > x,

G(r,x) = {
therefore,
0 r o0
un (r) =/ G(r, x)h\" (x) dx = Iong/ h,([)(x)der/ logx?h{"” (x) dx.
0 0 r
Hence ifr >1

o0
un(r) > Iogr2/ h") (x) dx = logr?
0

ash,([)(x) is a probability density. Moreover as, (r) is not decreasing we have that for
0<r <1,u,(r)>u,(0) = c,. Hence a lower bound far, (r) is

Cn if0<r<1,

un(r) = { logr2 if r > 1.

After Theorem2 we know thath,([) (r) does not depend os? therefore we can choose a
variance dependent ensuch that log(s2) = ¢,. From (21) an upper bound far, (r) is
then given by

1 =,
wy, (r) = ¢, + — log Z 2,
n ,
j=0
It is easy to show that for > 1

1 G
lim =log ) r% = logr®.

n—o0o n
j=0

Hence the sequencsg is bounded above by zero and Jimy ¢, = 0 because of the
continuity ofu,. Hence

lim w,(r) = lim v, (r). (24)
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Moreover, we notice that

1352/ 2 wA-r) 42 -1

‘ = — =
w"(r)_n Z;{:Orzj 1—,2 n(r2r2 — 1)
therefore
L) = lim w () = 0ifo<r<1 | O ifO<r<1,
Wool) = TR W) =1 205,51 7 2H(r—l)+@ifr>l,

whereH (r) is the Heaviside function. Moreover

0 if 0<r <1,
25(;’—1)—’722 if r > 1.

" H 1
w?l (r) = lim w/(r) =
OO( ) n—00 ”( )

But, by considering, (r) as a distribution, we have lijn, o v, (r) = w/,(r) and lim,_, «
v (r) = wZ, (r). Therefore, because of (24) we must have

nli_)moo u;l(r) = wéo(r), nli_)moo u;{(r) = wgc(r)

hence

lim hfl’ﬁ)(r) = lim 1 (ru,/l/ + u,’l) =ro(r —1)=0o(r —1). O
n—00 2

n—o0

2. The condensed density model

In order to get from (14) an analytic expression for the marginal condensed density with
respect to-, we need an analytic expression for the functigi) which is unfortunately
given by the difficult integral (19) which is not computable for generddy standard

methods. We then look for an analytic modéf) (r) of the condensed densiv;é,’)(r)
which is consistent with the empirical distributions that can be obtained by Monte Carlo
simulations. To this aim we start by noticing that the upper boup@) gives rise to the

true condensed densibﬁ) (r). In fact we have

Theorem 4. uy(r) = 3(loga?—TI')+log(1+r?), wherel is the Euler constant. Moreover
h(")(},) _ 2r
1 - a2
Proof. Whenn = 1 the generalized eigenvalue problem (6) becomes
agy+1—zaq = 0.

From standard results of interpolation by sum of complex exponefitia)S heorem 2.c],
there exist random variablés, b) such that

b=ay, Ab=ayy1.
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But by hypothesiga, 11, a,) has a bivariate complex Gaussian density

1 lag1112+lag |2
— g al"Hiag

(aq+1»aq) ~ me o

By making the transformation
T : (ag+1, aq) — (A, D)

noting that the complex Jacobian®f ! is J- = b and remembering that the Jacobian with
respect to the real and imaginary part of the complex variablgs is |Jc|2 = |b|? (see
e.g. the appendix ifb]), we get

1 _bIPA+iP)

2 |b°.
(na2)2 ° |

(4, b) ~

The marginal density with respect ids then

bl <1;|/\2) b2 b db 1
(no—Z)Z/ / w A S = e

In polar coordinateg = re!* we get

h(”)( ) /n 1 dOC 2r

r) = — 55 I VNG NG)
' —r (L r?)2 (1+r2)?
henceu1(r) must satisfy the ODE

2r

(ru1+u1) m

NI =

whose general solution is
c1+ calog(r) + log(1+ r2). (25)

But whenn = 1 andr = 0 the integral in (19) can be done explicitly giving

mm:?w&—m

Taking the limit forr — 0 in (25) and imposing this initial condition and the condition that
the solution is bounded in zero, we get the resulil

Motivated by this result, we propose a class of models which coincides with the true
density forn = 1 and has the expected asymptotic behavior as prescribed by Th8orem
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Let us first define
1 n
~ _ - (n) 2j
iin(r) = = log ;)vj P,
j:

wherey; =y j=0....n 0< 7" <1, andyy” = i = 1 in order to correctly
reproduce:1(r) (apart from a constant). Then define

. 1
h,([)(r) > (rﬁ” +u )
The following theorem holds

Theorem 5. The modet!” (r) is a probability density i.e. itis nonnegative afiff A () dr
= 1. Moreoverlim, oo A (r) = 5(r — 1).

Proof. LetbeH,(r) = 3 rii,(r). As H(r) = hy’(r) it is enough to show tha, (r) is a
nonnegative nondecreasing function such thiat0) = 0 and lim._, - H,(r) = 1. From
the definition ofii,, (r) we have

12] 1J’/j) 2/+r2n

1+ Y123y r2i 4 r2e

Hy,(r) =

henceH, (r) is nonnegativeH,(0) = 0 and lim-_, o H,(r) = 1. Let us show that it is
nondecreasing. Let be < 7; it is easy to show thakl, (r) — H,(7) = Y, ox(r?* — 7%)
wherey; > 0. HenceH, (r) is nondecreasing. The last part of the thesis follows by the same
arguments used in the proof of Theor8moticing thati, (r) <w, (r) becausey(") <1

O

Remark. We notice that, an,’)(r), alsofzf,’)(r) does not depend on the noise varianée

3. Numerical results

In this section we report on some Monte Carlo simulations for computing the empirical
distributions of the absolute value of the poles of the Padé approxirfianis for several
orders and compare them to a specific model from the class described in the previous
section.

By choosing

(") =(1+logj)~ A+h) B, =log(1+ log(1+ 0.01x n)),
j=1....,n=-1, n=2.3,...

we got a good fit with the empirical distributions in the range (1,500 as shown in
Figs.2-4 where the empirical distributions of the absolute value of the poles of the Padé
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1.2+

-2 0 2 4 6 8 10 12 14

Fig. 2. Empirical distribution of the modulus of the poleg®f3],(z); solid: fzg) (r).

0 1 L il )
-0.5 0 0.5 1 15 2 25

Fig. 3. Empirical distribution of the modulus of the poleg 29, 30], (z); solid: ﬁgg ().

approximants of ordej2, 3], [29,30], [499,500], respectively, are shown. The empirical
distributions are built using 3000 samples each. In Bighe model functiorfzﬁf)(r) is
plotted for several values af
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Fig. 4. Empirical distribution of the modulus of the poleq499,500],(z); solid:ﬁ(S’O)O(r).

35}
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Fig. 5. The functiong” () forn = 1,2, ..., 15.

Acknowledgments

The author is grateful to G.L. Torrisi for his valuable comments and careful reading of
the manuscript.



240 P. Barone / Journal of Approximation Theory 132 (2005) 224—-240

References

[1] G.A. Baker Jr., Essentials of Padé Approximants, Academic Press, New York, 1975.

[2] P. Barone, R. March, On the super-resolution properties of Prony’s method, ZAMM Z. Angew. Math. Mech.
76 (1996) 177-180.

[3] P. Barone, R. March, Some properties of the asymptotic location of poles of Padé approximants to noisy
rational functions, relevant for modal analysis, IEEE Trans. Signal Process. 46 (1998) 2448—-2457.

[4] P. Barone, R. March, A novel class of Padé based method in spectral analysis, J. Comput. Methods Sci. Eng.
1(2001) 185-211.

[5] P. Barone, Orthogonal polynomials, random matrices and the numerical inversion of Laplace transform of
positive functions, J. Comput. Appl. Math. 155 (2003) 307-330.

[6] D. Bessis, Padé approximants in noise filtering, J. Comput. Appl. Math. 66 (1996) 85—88.

[7] T. Carleman, Les Functions Quasi Analytiques, Gauthier-Villars, Paris, 1926.

[8] J.L. Gammel, Effect of random errors (noise) in the terms of a power series on the convergence of the Padé
approximants, in: P.R. Graves-Morris (Ed.), Padé Approximants, The Institute of Physics, London and Bristol,
1972.

[9] J.L. Gammel, J. Nuttall, Convergence of Padé approximants to quasianalytic functions beyond natural
boundaries, J. Math. Anal. Appl. 43 (1973) 694—696.

[10] J. Gilewicz, Approximants de Padé, Lecture Notes in Mathematics, vol. 667, Springer, Berlin, 1978.

[11] J.M. Hammersley, The zeros of a random polynomial, Proceedings of the Berkeley Symposium on
Mathematical and Statistical Probability, vol. 2, 1956, pp. 89-111.

[12] P. Henrici, Applied and Computational Complex Analysis, vol. I, Wiley, New York, 1977.

[13] O.D. Kellogg, Fondations of Potential Theory, Springer, Berlin, 1929.

[14] Li Jialiang, On the existence and convergence of random Padé approximants, Adv. Math. 22 (1993) 340—
347.

[15] R. March, P. Barone, Application of the Padé method to solve the noisy trigonometric moment problem:
some initial results, SIAM J. Appl. Math. 58 (1998) 324—343.

[16] R. March, P. Barone, Reconstruction of a piecewise constant function from noisy Fourier coefficients by Padé
method, SIAM J. Appl. Math. 60 (2000) 1137-1156.

[17] A.W. Marshall, I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, New
York, 1979.

[18] L. Pakula, Asymptotic zero distribution of orthogonal polynomials in sinusoidal frequency estimation, IEEE
Trans. Inform. Theory 33 (1987) 569-576.

[19] L. Schwartz, Théorie des distributions, vol. 1, Hermann, Paris, 1950.



	On the distribution of poles of Padé approximants to the =Z-transform of complex Gaussian white noise
	Introduction
	Properties of the condensed density
	The condensed density model
	Numerical results
	Acknowledgments
	References


