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Abstract

In the application of Padé methods to signal processing a basic problem is to take into account the
effect of measurement noise on the computed approximants. Qualitative deterministic noise models
havebeenproposedwhichareconsistentwithexperimental results. In thispaper thePadéapproximants
to theZ-transform of a complex Gaussian discrete white noise process are considered. Properties of
the condensed density of the Padé poles such as circular symmetry, asymptotic concentration on the
unit circle and independence on the noise variance are proved. An analytic model of the condensed
density of the Padé poles for all orders of the approximants is also computed. Some Monte Carlo
simulations are provided.
© 2004 Elsevier Inc. All rights reserved.
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0. Introduction

Inmanysignalprocessingproblemsafinitenumberof termsof thesequenceofequispaced
data

ak = sk + �k, k = 0, 1,2, . . . (1)
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where�k is a complex Gaussian white noise sequence is given. TheZ-transform

s(z) =
∞∑
k=0

skz
−k

is then considered and inference on{sk} is performed based on aPadé approximant[l, n]f of
f (z) = ∑∞

k=0 akz
−k computable from the observationsak, k = 0, . . . , l+ n. The poles of

[l, n]s in the complex plane are the key quantities to make inference on{sk}. Unfortunately
these quantities are very sensitive to noise. Therefore the knowledge of an approximation
of f (z) alone hardly helps to solve the problem. However, the appearance of the Froissart
doublets[10] (pole-zero pairs of[l, n]f close to the unit circle at a distance proportional to
the scale of the noise) can help identifying the poles of[l, n]s filtering out the noise-related
ones[6]. Following a somewhat different approach in[2–4,15,16], we were able to get
some partially rigorous asymptotic results on the behavior of the poles of[l, n]f for some
specific classes of functionss(z) by using qualitativemodels for theZ-transform�(z) of the
noise. Moreover, we demonstrated experimentally that inference methods based on these
asymptotic results perform very well in many real life problems. The aim of this paper is
to provide some theoretical justification for using such qualitative noise models.
More specifically the qualitative models for�(z) are derived as follows. First notice that

if the �k are independent and identically distributed complex random variables with mean
zero and variance�2, the variance of�(z) is [1]

E{|�(z)|2} =
∞∑
k=0

E{|�kz−k|2} = �2
∞∑
k=0

|z|−2k = �2/(1− |z|−2),

whereE{·} denotes the expected value and the series converges in quadratic mean for
|z| > 1.
The variance diverges asz approaches the unit circle in the complex plane. Thus the

presence of the noise makes the unit circle a natural boundary for the functionf (z), i.e.
a curve of singularities which separates the complex plane into two disconnected pieces.
Then Gammel[8,9], motivated by the Froissart experimental results, conjectured that the
noise function�(z) is a quasi-analytic function in the sense of Carleman[7]. Following this
conjecture, in the papers quoted before we then approximated the random function�(z) by
the following deterministic one:

�̃(z) =
m�∑
r=1

Br/(1− �rz
−1), (2)

wherem� is a large integer, the poles�r = eiϑr are equally spaced along the unit circle,
and theBr are complex constants which satisfy the condition

|Br | < const. exp(−r1+�),

with � > 0. Asm� → ∞ Carleman has shown[7] that function (2) converges to a quasi-
analytic function which has the unit circle as a natural boundary.Wewould like to show that
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Fig. 1. Location of the poles of[29,30]�(z) for 50 independent realizations of�.

the Padé approximants of�(z) are random rational functionswhose poles have a distribution
concentrated close to the unit circle (see Fig.1). In [18] the asymptotic zero distribution
of polynomials orthogonal with respect to certain positive measures on the unit circle is
studied and it is proved that the asymptotic zeros distribution is uniform on the unit circle.
Unfortunately, this kind of result is not useful in the present context because thef (z) is
a random function, therefore the Padé approximants[l, n]f involve random polynomials
orthogonal in a generalized sense with respect to the random data{ak} and hence theak are
not the Fourier–Stieltjes coefficients of a positive measure.
In the following, it will be proved that the condensed density of the poles of[l, n]f—i.e.

the expectation of the normalized counting measure defined on the poles—whensk = 0
and�k are i.i.d. standard complex Gaussian variates is circularly symmetric for alln, it
is concentrated around the unit circle, therefore supporting the choice of the deterministic
model (2) and it is independent of the noise variance. Moreover an analytic model of the
marginal condensed density, with respect to the absolute value of the poles, is derived for
all ordersn.
The paper is organized as follows. In Section 1 the properties of the condensed density

of the Padé poles are derived. In Section 2 a model of the condensed density is computed.
In Section 3 some numerical results are shown.
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1. Properties of the condensed density

Let f (z) be theZ-transform of the sequence{ak} given by the Laurent power series

f (z) =
∞∑
k=0

akz
−k. (3)

From the coefficients in this expansion we may compute the Padé approximant[l, n]f of
ordersl andn to f (z) which is defined by[1]

[l, n]f = P1(z−1)/P2(z
−1),

whereP1(z) andP2(z) are polynomials inz of degreel andn, respectively, which satisfy

P1(z
−1)− P2(z−1)f (z) = O(z−(l+n+1)), as|z| → ∞. (4)

Given theak, k = 0, . . . , l + n, the substitution of expansion (3) in condition (4) yields a
linear system of equations which determines the coefficients of the polynomialsP1 andP2.
If we write the coefficients ofP1(z) andP2(z) as

P1(z) = �0 + �1z+ · · · + �lz
l,

P2(z) = 1+ �nz+ · · · + �1zn,

the linear system is given by[1]

�0 = a0,
�1 = a1 + a0�n,
�2 = a2 + a1�n + a0�n−1

...
...

�l = al + al−1�n + · · · + a0�n−l+1,

0= al+1 + al�n + · · · + al−n+1�1,
...
...

0= al+n + al+n−1�n + · · · + al�1
with the convention thataj = 0 if j < 0. Let us define for every integerq the Hankel
matrices

U(q) =




aq aq+1 . . . aq+n−1
aq+1 aq+2 . . . aq+n
. . . .

aq+n−1 aq+n . . . aq+2n−2


 (5)

and the vectorsa(q) = [aq+n, . . . , aq+2n−1]T . To compute the coefficients� of P2(z) we
have then to solve the linear system

U(l−n+1)� = −a(l−n+1).



228 P. Barone / Journal of Approximation Theory 132 (2005) 224–240

The poles of[l, n]f are then the roots ofP2(z−1). Equivalently it can be easily shown (see
e.g.[4]) that the poles are the generalized eigenvalues of

(
U(q+1), U(q)

)
, q = l − n+ 1,

i.e. they are the roots of

det
(
U(q+1)− zU(q)

)
= 0. (6)

In the case considered here the sequence{ak} is a sequence of i.i.d. random variables. The
Padé approximants[l, n]f of the random function (3) exist a.s. as proved in[14].
Let us now recall the definition of the condensed density of the zeros of a random

polynomial. Let us consider first the normalized counting measure

�n = 1

n

∑
Pn(z)=0

�(z)

on the zeros�j of a deterministic polynomialPn(z). We can also define a spectral density

�n(z) = 1

n

n∑
j=1

�(z− �j ).

If A is a Borel subset ofC andH = {�1, . . . , �n} then

�n(A) =
∫
A

�n(z) dz.

When we are dealing with random polynomials the zeros counting measure�n becomes a
random measure. In this case, we are interested in the mean percentage of zeros belonging
toA. Following[11] we can then define a condensed densityhn(z) by

E [�n(A)] =
∫
A

hn(z) dz

which exists whatever is the joint distribution of the polynomial coefficients. Therefore,

hn(z) = E[�n(z)] = 1

n
E


 n∑
j=1

�(z− �j )


 .

We also have that, when the random polynomial leading coefficient is equal to one, all the
marginal densities of the roots�1, . . . , �n are equal to the condensed density function (see
e.g.[5]). We can now prove the basic result where we denote by tr the trace operator and
by logM the matrix logarithm operator.

Theorem 1. The condensed density of the zeros of the random polynomial

P2(z
−1) = Q(z) = det

(
U(q+1)− zU(q)

)

is given by

hn(z) = 1

4	
�un(z), (7)
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wherez = x + iy, � = �2

�x2 + �2

�y2 , and

un(z) = 1

n
E
{
tr
(
logM

[
(U(q+1)− zU(q))(U(q+1)− zU(q))

])}

or, equivalently,

un(z) = 1

n
E
{
log(|Q(z)|2)

}
. (8)

Proof. From the definition of matrix logarithm we have

log[det(A)] = tr[logM(A)]
for any square matrixA. Hence

log |Q(z)|2 = log[det(U(q+1)− zU(q)) · det(U(q+1)− zU(q))]
= log[det{(U(q+1)− zU(q)) · (U(q+1)− zU(q))}]
= tr logM [(U(q+1)− zU(q)) · (U(q+1)− zU(q))].

But we also have

Q(z) = det(U(q+1)− zU(q)) =
∏
j

(�j − z) · det(U(q)).

Hence

log |Q(z)|2 = log
∏
j

|z− �j |2 + log | det(U(q))|2

=
∑
j

log |z− �j |2 + tr logM(U
(q)U(q)).

By equating the two expressions for log|Q(z)|2 we get∑
j

log |z− �j |2

= tr logM [(U(q+1)− zU(q)) · (U(q+1)− zU(q))] − tr logM(U
(q)U(q)). (9)

Let us now consider the classic result[19, p. 47]:

� log
1√

(x2 + y2) = −2	�(x)�(y). (10)

But then ifz = x + iy
1

4	
� log(|z|2) = �(z).

Using this identity we have:

hn(z) = 1

n

n∑
j=1

E
[
�(z− �j )

] = 1

4	n

n∑
j=1

E
[
� log |z− �j |2

]
.
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But � log |z − �j |2 is a nonnegative distribution, therefore if
(z) is a nonnegative test
function with compact support�, then by definition

� log |z− �j |2(
) =
∫
�
(�
(z)) log |z− �j |2 dz

and

∫
�
hn(z)
(z) dz = 1

4	n

n∑
j=1

E

[∫
�
(�
(z)) log |z− �j |2 dz

]
<∞

because
(z) is continuous and
∫

C hn(z) dz = 1, hence by Tonelli’s theorem

∫
�
hn(z)
(z) dz = 1

4	n

n∑
j=1

∫
�
(�
(z))E

[
log |z− �j |2

]
dz.

Thereforehn(z) = 1
4	n

∑n
j=1�E[log |z− �j |2]. But then, from (9), we have

hn(z) = 1

4	n
�E

{
tr logM

[
(U(q+1)− zU(q))(U(q+1)− zU(q))

]}

becauseE
{
tr
(
logM

[
U(q)U(q)

])}
does not depend onz. This completes the proof.�

Remark. We notice that− 1
4	 un(z) is the logarithmic potential of the condensed density

hn(z) [13].

In the next theorem the circular symmetry of the condensed densityhn(z) and its inde-
pendence of the noise variance�2 are proved.
In the following, in order to simplify the notations, the functions are denoted by the same

symbols either when a change of variables from cartesian to polar coordinates is done or
when the dependence on a specific variable has to be stressed.

Theorem 2. If the dataak, k = q, . . . , q + 2n − 1 are independent,zero mean complex
Gaussian random variables with variance�2 and z = rei� thenun(z) is a function of r
alone and is given by

un(r) = 1

n
E
{
log

(
det[F(r, a)])} , (11)

where

F(r, a) = U(q+1)U(q+1)+ r2U(q)U(q) − r[U(q)U(q+1)+ U(q+1)U(q)] (12)

and

a = [aq, . . . , aq+2n−1].
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Moreover the condensed density in polar coordinates is

hn(r, �) = r

4	

(
�2un
�r2

+ 1

r

�un
�r

)
, (13)

the marginal condensed density with respect to r is

h(r)n (r) = 1

2

(
ru′′
n + u′

n

)
(14)

and the marginal condensed density with respect to� is uniform on[−	,	]. Moreover
h
(r)
n (r) is independent of�2.

Proof. By hypothesis

a ∼ 1

(	�2)N
e
− |a|2

�2 , whereN = 2n.

This density is then invariant under the transformation

a → e±i
�
2 a. (15)

Let us show that if̃z = ei�z = rei(�+�) thenun(z) = un(z̃) ∀�. From (8) we have

un(z̃)= 1

n
E
{
log[det{(U(q+1)− rei(�+�)U(q)) · (U(q+1)− rei(�+�)U(q))}]

}

= 1

n
E
{
log[det{U(q+1)U(q+1)+ r2U(q)U(q)

−r(ei(�+�)U(q)U(q+1)+ e−i(�+�)U(q+1)U(q))}]
}
.

LettingV (q) = ei�/2U(q), V (q+1) = e−i�/2U(q+1) we have

V (q)V (q) = U(q)U(q), V (q+1)V (q+1) = U(q+1)U(q+1),

ei(�+�)U(q)U(q+1) = ei�(ei�/2U(q))(e−i�/2U(q+1)) = ei�V (q)V (q+1),

e−i(�+�)U(q+1)U(q) = e−i�(e−i�/2U(q+1))(ei�/2U(q)) = e−i�V (q+1)V (q)

and

un(z̃)= 1

n
E
{
log[det{V (q+1)V (q+1)+ r2V (q)V (q)

−r(ei�V (q)V (q+1)+ e−i�V (q+1)V (q))}]
}
.

Hence, from the invariance property of the distribution ofa under transformation (15), we
haveun(z̃) = un(z). But then taking� = −� we haveun(z̃) = un(r).

In order to prove (13) and (14) let us consider polar coordinatesx = r cos�, y = r sin�

in (7). Remembering that the Laplacian�
2

�x2 + �2

�y2 , in polar coordinates is

�2

�r2
+ 1

r2

�2

��2
+ 1

r

�
�r
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we get

hn(r, �) = rhn(r cos�, r sin�) = r

4	

(
�2un
�r2

+ 1

r2

�2un
��2

+ 1

r

�un
�r

)
. (16)

Therefore, asun does not depend on�, formula (16) reduces to

hn(r, �) = r

4	

(
�2un
�r2

+ 1

r

�un
�r

)
= hn(r). (17)

The marginal densities with respect tor and� are, respectively,

h(r)n (r) =
∫ 	

−	
hn(r, �) d� =

∫ 	

−	
hn(r) d� = 2	hn(r) = 1

2

(
ru′′
n + u′

n

)
, (18)

and

h(�)n (�) =
∫ ∞

0
hn(r, �) dr =

∫ ∞

0
hn(r) dr = 1

2	

∫ ∞

0
h(r)n (r) dr = 1

2	

thereforeh(�)n (�) has a uniform density on[−	,	].
We show now thath(r)n (r) is independent of�2. Let us consider the change of variable

ã = 1
�a and writeun(r) as

un(r) = 1

n(	�2)N

∫
log

(
det{F(r, a)}) e− |a|2

�2 da. (19)

But

da =
N−1∏
k=0

�dak ·
N−1∏
k=0

�dak = �N
N−1∏
k=0

�dãk · �N
N−1∏
k=0

�dãk = �2N dã,

where� and� denote real and imaginary parts. MoreoverF(r, a) = �2F(r, ã), therefore
det{F(r, a)} = �2N det{F(r, ã)} and

un(r) = 2N log(�)+ 1

n	N

∫
log

(
det{F(r, ã)}) e−|ã|2dã. (20)

But thenu′
n, u

′′
n and henceh(r)n (r) do not depend on�. �

In the next theoremwe prove that the condensed densityh
(r)
n (r) converges to the uniform

measure on the unit circle whenn→ ∞.

Theorem 3. limn→∞ h(r)n (r) = �(r − 1).

Proof. Let us consider the matrix functiong(A) = log(det[A]) defined on the Hermitian
matricesA. From[17, F.2.c, p. 476]we know thatg is a matrix-concave function. Hence
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from a generalization of Jensen inequality to matrix functions[17, E.6, p. 467]it follows
that

E
{
log

(
det[F(r, a)])} � log

(
det[E {F(r, a)}]) .

But

E[F ] =E[U(q+1)U(q+1)] + r2E[U(q)U(q)]
−r

(
E[U(q)U(q+1)] + E[U(q+1)U(q)]

)

and, because theak are independent random variables,

eTj E[U(q+1)U(q+1)]ek =
n∑
h=1

E[aj+hah+k] = �j,kn�2,

eTj E[U(q)U(q)]ek =
n∑
h=1

E[aj+h−1ah+k−1] = �j,kn�2,

eTj E[U(q+1)U(q)]ek =
n∑
h=1

E[aj+hah+k−1] = �j,k−1n�2,

eTj E[U(q)U(q+1)]ek =
n∑
h=1

E[aj+h−1ah+k] = �j−1,kn�2.

Hence

E[F ] = n�2



1+ r2 −r 0 . . . 0
−r 1+ r2 −r 0 . . .

. . . . .

0 . . . 0 −r 1+ r2


 .

Moreover it is easy to show that det(E[F ]) = (n�2)n
∑n
j=0 r

2j . Hence

log det(E[f ]) = n log(n�2)+ log
n∑
j=0

r2j

and

un(r)� log(n�2)+ 1

n
log

n∑
j=0

r2j . (21)

In order to find a lower bound forun(r) let us rewrite the marginal condensed density with
respect tor ash(r)n (r) = [12 ru′

n]′. Hence1
2 ru

′
n must be a distribution function. But then

1
2 ru

′
n�0 and thereforeun(r) is nondecreasing. Moreover, it is easy to show that

un(0) = cn > −∞ (22)
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and

lim
r→∞

un(r)

log(r2)
= 1. (23)

But then theGreen function of the differential operator in (14) with the boundary conditions
(22) and (23) is

G(r, x) =
{
logx2 if r�x,
logr2 if r > x,

therefore,

un(r) =
∫ ∞

0
G(r, x)h(r)n (x) dx = logr2

∫ r
0
h(r)n (x) dx +

∫ ∞

r

logx2h(r)n (x) dx.

Hence ifr�1

un(r)� logr2
∫ ∞

0
h(r)n (x) dx = logr2

ash(r)n (x) is a probability density. Moreover asun(r) is not decreasing we have that for
0�r < 1, un(r)�un(0) = cn. Hence a lower bound forun(r) is

vn(r) =
{
cn if 0�r�1,
logr2 if r > 1.

After Theorem2 we know thath(r)n (r) does not depend on�2 therefore we can choose a
variance dependent onn such that log(n�2

n) = cn. From (21) an upper bound forun(r) is
then given by

wn(r) = cn + 1

n
log

n∑
j=0

r2j .

It is easy to show that forr > 1

lim
n→∞

1

n
log

n∑
j=0

r2j = logr2.

Hence the sequencecn is bounded above by zero and limn→∞ cn = 0 because of the
continuity ofun. Hence

lim
n→∞ wn(r) = lim

n→∞ vn(r). (24)
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Moreover, we notice that

w′
n(r) = 1

n

∑n
j=1 2jr

2j−1∑n
j=0 r

2j
= 2r

1− r2
nr2n(1− r2)+ r2n − 1

n(r2nr2 − 1)

therefore

w′∞(r) = lim
n→∞ w

′
n(r) =

{
0 if 0�r�1
2
r
if r > 1

=
{
0 if 0�r�1,
2H(r − 1)+ 2(1−r)

r
if r > 1,

whereH(r) is the Heaviside function. Moreover

w′′∞(r) = lim
n→∞ w

′′
n(r) =

{
0 if 0�r�1,
2�(r − 1)− 2

r2
if r > 1.

But, by consideringvn(r) as a distribution, we have limn→∞ v′n(r) = w′∞(r) and limn→∞
v′′n(r) = w′′∞(r). Therefore, because of (24) we must have

lim
n→∞ u

′
n(r) = w′∞(r), lim

n→∞ u
′′
n(r) = w′′∞(r)

hence

lim
n→∞ h

(r)
n (r) = lim

n→∞
1

2

(
ru′′
n + u′

n

) = r�(r − 1)= �(r − 1). �

2. The condensed density model

In order to get from (14) an analytic expression for the marginal condensed density with
respect tor, we need an analytic expression for the functionun(r) which is unfortunately
given by the difficult integral (19) which is not computable for generaln by standard
methods. We then look for an analytic modelh̃(r)n (r) of the condensed densityh(r)n (r)
which is consistent with the empirical distributions that can be obtained by Monte Carlo
simulations. To this aim we start by noticing that the upper boundw1(r) gives rise to the
true condensed densityh(r)1 (r). In fact we have

Theorem 4. u1(r) = 1
2(log�2−�)+ log(1+r2),where� is the Euler constant. Moreover

h
(r)
1 (r) = 2r

(1+r2)2 .

Proof. Whenn = 1 the generalized eigenvalue problem (6) becomes

aq+1 − zaq = 0.

From standard results of interpolation by sum of complex exponentials[12, Theorem 2.c],
there exist random variables(�, b) such that

b = aq, �b = aq+1.
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But by hypothesis(aq+1, aq) has a bivariate complex Gaussian density

(aq+1, aq) ∼ 1

(	�2)2
e
− |aq+1|2+|aq |2

�2 .

By making the transformation

T : (aq+1, aq)→ (�, b)

noting that the complex Jacobian ofT −1 isJC = b and remembering that the Jacobian with
respect to the real and imaginary part of the complex variables isJR = |JC |2 = |b|2 (see
e.g. the appendix in[5]), we get

(�, b) ∼ 1

(	�2)2
e
− |b|2(1+|�|2)

�2 |b|2.

The marginal density with respect to� is then

1

(	�2)2

∫ ∞

−∞

∫ ∞

−∞
e
− |b|2(1+|�|2)

�2 |b|2 · d�b · d�b = 1

	(1+ |�|2)2 .

In polar coordinates� = rei� we get

h
(r)
1 (r) =

∫ 	

−	

1

	(1+ r2)2 r d� = 2r

(1+ r2)2

henceu1(r) must satisfy the ODE

1

2

(
ru′′

1 + u′
1

) = 2r

(1+ r2)2

whose general solution is

c1 + c2 log(r)+ log(1+ r2). (25)

But whenn = 1 andr = 0 the integral in (19) can be done explicitly giving

u1(0) = 1

2
(log�2 − �).

Taking the limit forr → 0 in (25) and imposing this initial condition and the condition that
the solution is bounded in zero, we get the result.�

Motivated by this result, we propose a class of models which coincides with the true
density forn = 1 and has the expected asymptotic behavior as prescribed by Theorem3.
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Let us first define

ûn(r) = 1

n
log


 n∑
j=0

�(n)j r
2j


 ,

where�(n)j = �(n)n−j , j = 0, . . . , n; 0 < �(n)j �1, and�(n)0 = �(n)n = 1 in order to correctly
reproduceu1(r) (apart from a constant). Then define

ĥ(r)n (r) = 1

2

(
rû′′
n + û′

n

)
.

The following theorem holds

Theorem 5. Themodel̂h(r)n (r) is aprobabilitydensity i.e. it is nonnegativeand
∫∞
0 ĥ

(r)
n (r) dr

= 1.Moreoverlimn→∞ ĥ(r)n (r) = �(r − 1).

Proof. Let beHn(r) = 1
2 rû

′
n(r). AsH

′
n(r) = ĥ(r)n (r) it is enough to show thatHn(r) is a

nonnegative nondecreasing function such thatHn(0) = 0 and limr→∞Hn(r) = 1. From
the definition ofûn(r) we have

Hn(r) =
1
n

∑n−1
j=1 j�

(n)
j r

2j + r2n
1+∑n−1

j=1 �(n)j r
2j + r2n

henceHn(r) is nonnegative,Hn(0) = 0 and limr→∞Hn(r) = 1. Let us show that it is
nondecreasing. Let ber < r̃; it is easy to show thatHn(r) − Hn(r̃) = ∑

k �k(r
2k − r̃2k)

where�k > 0. HenceHn(r) is nondecreasing. The last part of the thesis follows by the same
arguments used in the proof of Theorem3, noticing thatûn(r)�wn(r) because�(n)j �1.

�

Remark. We notice that, ash(r)n (r), alsoĥ
(r)
n (r) does not depend on the noise variance�2.

3. Numerical results

In this section we report on some Monte Carlo simulations for computing the empirical
distributions of the absolute value of the poles of the Padé approximants[l, n]f for several
orders and compare them to a specific model from the class described in the previous
section.
By choosing

�(n)j = (1+ logj)−(1+�n), �n = log(1+ log(1+ 0.01∗ n)),
j = 1, . . . , n− 1, n= 2, 3, . . .

we got a good fit with the empirical distributions in the rangen ∈ (1,500) as shown in
Figs.2–4 where the empirical distributions of the absolute value of the poles of the Padé



238 P. Barone / Journal of Approximation Theory 132 (2005) 224–240

 -2 0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 2. Empirical distribution of the modulus of the poles of[2, 3]�(z); solid: ĥ(r)3 (r).
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Fig. 3. Empirical distribution of the modulus of the poles of[29,30]�(z); solid: ĥ(r)30 (r).

approximants of order[2, 3], [29,30], [499,500], respectively, are shown. The empirical
distributions are built using 3000 samples each. In Fig.5 the model functionĥ(r)n (r) is
plotted for several values ofn.



P. Barone / Journal of Approximation Theory 132 (2005) 224–240 239

0.94 0.96 0.98 1 1.02 1.04 1.06
0

20

40

60

80

100

120

140

Fig. 4. Empirical distribution of the modulus of the poles of[499,500]�(z); solid: ĥ(r)500(r).
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Fig. 5. The functionŝh(r)n (r) for n = 1,2, . . . ,15.
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